
WORTHWHILE
MODERN
DEPLOYMENT
STRATEGIES
- A FULL GUIDE

BY DEVELOPERS • FOR DEVELOPERS

Shannon Gault
remove date

t

Red/black, blue/green, A/B, canary, rolling… There
are hundreds of articles written on these application
deployment strategies. As with any newer approach
in tech, it can be difficult to discern practical
applications from the hype. We will take a look at
these strategies, how they evolved, and whether
your application can benefit from them. Finally, we
will cover the symbiotic relationship between these
deployment strategies and hosting your application
in the Cloud.

The evolution of deployment strategies can be
divided into three broad, but distinct, “generations”
— a time before they existed (“generation 0”), the
proliferation of build tools coupled with source
control (“generation 1”), and advanced deployment
strategies using multiple load-balanced instances
(“generation 2”). It’s important to understand
that the “unequivocal advantage at no extra cost”
improvements stopped after “generation 1”. The
latest deployment strategies are highly situational
and/or require significant investment. Nonetheless,
these strategies are only going to get more popular,
as they are invaluable when facing one of the
specific problems they are designed to solve.
Before attempting to apply advanced deployment
strategies, it’s helpful to understand the several
decades of deployment strategy evolution which
serve as their foundation.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 2

t

GENERATION 0: MANUALLY MOVING
FILES TO A PHYSICAL MACHINE
Before the 2000s, not much thought was given to deployments; we were
living in a Waterfall world with its long development cycles. Efficient
deployments weren’t as much of a concern, since they happened so rarely.
The three defining characteristics of this era are:

• Everything is done manually

• No version control (or deployments don’t use it)

• The application is deployed to expensive on-prem machines

To really understand this approach, we need to fully understand the amount
of manual work involved:

If you aren’t wincing, you should be. While the downsides of this approach
are obvious, they are listed below for emphasis:

1. Significant downtime when the application is stopped, files are copied
over, and the app is restarted.

2. Inability to roll back quickly if a mistake is found, since the process is
manual.

3. High error rate caused by tedious, repetitive tasks, requiring meticulous
detail during what is often a high-stress deploy.

4. Increased bus factor risk due to the tribal knowledge and longer
onboarding needed to support archaic manual deployments; developers
are also far more likely to leave if they are stuck doing manual tasks
which can be easily automated.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 3

t

GENERATION 1: AUTOMATED BUILDS
FROM SOURCE CONTROL
As mentioned earlier, the listed problems were historically deemed
acceptable due to the infrequent deployment cycles under the Waterfall
methodology. With the advent of Agile, deployments became more and
more frequent, bringing the inefficiencies of manual deployments into the
spotlight.

However, despite the demand, fully automating deployments would have
been difficult without version control. Without it, files would still need to
be manually moved to the build server, which would nullify most of the
benefits that come with deploy automation; the timing worked out — just as
companies were starting to adopt Agile, Git emerged as the leading source
control system and gained widespread use, even among companies that are
far behind the bleeding edge in IT.

The demand for faster and simpler builds, coupled with the widespread
use of source control systems, paved the way for rapid advancement in
build automation tools. The laborious process of making sure the code
compiles, the unit tests pass, moving the compiled build artifact, restarting
the application with the new code, etc., was offloaded to build automation
systems such as Jenkins, TeamCity, Travis CI, etc.

These tools have streamlined deployments — improving speed, while
simultaneously decreasing the error rates, developer workload, and
eliminating the need for specialized archaic knowledge. Many of these tools
are free and easy to set up. There is no longer any reason for a company to
deploy manually. This is especially true for companies that have moved their
infrastructure to the Cloud, as all the major cloud providers (Azure, AWS,
GCP) provide build tools virtually “out of the box”.

The majority of tech-savvy small and mid-size companies today have
adopted some sort of CI/CD pipeline. However, there are still businesses with
revenue in the hundreds of millions that run without source control or CI/
CD tools. Not only is this extremely inefficient, but it is a liability that can
compound the stress of an innately difficult situation where a key developer
with knowledge of the deployment process is fired or leaves. In the worst
case, the company may find itself unable to update a key product, or even
restart it properly if an error occurs.

If your company is one of those NOT using a CI/CD pipeline — implementing
one is likely the best cost/benefit ratio IT project to undertake, bar none.
If you find yourself in that situation, I recommend skipping the rest of this
article and looking into build automation tools instead. However, if you have
the build pipeline foundation in place, read on to the advanced features
which evolved on top of those fundamentals.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 4

https://www.callibrity.com/blog/top-ci-cd-tools-of-2020
https://www.callibrity.com/blog/top-ci-cd-tools-of-2020

t

GENERATION 2: SOLVING HIGHLY
SPECIFIC PROBLEMS AND COLLECTING
USAGE INSIGHTS

Generation 2 is a bit of a misnomer, since the latest deployment strategies
are not so much an across-the-board efficiency boost, as they are a loose
collection of disparate solutions to very specific problems.

Most of these require a load balancer and the ability to deploy multiple
instances. Many also require a person to monitor and interpret the results.
Since all deployment strategies solve different problems, we will look at
them separately. We will also take a look at A/B testing and feature flags,
which are not truly deployment strategies, despite often being labelled as
such and having some overlap. The strategies are listed in descending order
in terms of utility and benefit for effort for most companies. However, some
companies may have a specific need that makes one of the strategies far
down on the list invaluable, so it’s good to be aware of them.

BLUE/GREEN (AKA RED/BLACK)
DEPLOYMENTS

Use cases:

• Zero-downtime
deployments

• Instantaneous
rollbacks

• Removing failed build
risk

• Increasing test
confidence

• Reducing off-hours
work

Cons:

• Costs for secondary
environment
(mitigated by using
Cloud platforms)

Requirements:

• Proxy

• Infrastructure for
second environment

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 5

t

Even with an automated build, starting an application after applying
changes takes time, resulting in the application being inaccessible
to users for up to a couple of minutes. This can cause frustration,
especially if a user tries to submit a form during the deployment and
loses data. The common approach for avoiding user impact is highly
manual — shifting the deploy to a low traffic time of day by having a
developer or team deploy when user activity is at a low point, such
as at 3 a.m. Naturally, deploying and testing in the middle of the night
doesn’t make for a happy team. Happiness aside, global companies
such as Netflix, which pioneered this approach don’t have the luxury
of having any truly “low traffic” time and must entirely eliminate the
downtime caused by deployments.

A blue/green deployment solves this problem by creating an exact copy
of the live environment. For the sake of convention, the original live
environment is referred to as the “blue” environment, and the copy
containing the changes to be deployed is referred to as the “green”
environment. Once the copy is fully built, traffic is switched over to
it in an instant by changing which IP the proxy server points to. The
added advantage of this approach is that the green environment can be
fully tested in place before any traffic is moved over. The older “blue”
environment keeps running after traffic is moved over, so that if any
issues are found, traffic can be switched back over instantaneously.
Usually, the blue environment can be spun down to decrease cost once
the green deployment is confirmed to be good. This spin down process
is much easier and results in higher cost savings if the underlying
infrastructure is hosted in the Cloud, where it can be completely
“turned off”, as opposed to an expensive server sitting idle. A word
of warning here — if you choose to turn off the old environment
immediately after the deploy, ensure that it has finished processing
all in-flight requests before doing so. You may hear this referred to as
“draining” the environment before it is shut down.

Note that “red/black” deployments are a different name for the exact
same thing. There is no nuance — they are exactly the same as “blue/
green” deployments. You can read more about the naming convention
here and here, but the important take away is that the colors don’t
mean anything, they are just there to identify distinct environments.

Blue/Green deployments are, by far, the most practical and “universally
applicable” of these deployment strategies. They exist with virtually no
downsides, other than the minor cost of duplicating production servers
and some set up time. Even if you don’t regularly use blue/green
deployments, consider setting up the infrastructure to do so for large
features which takes months to build and cannot be released until fully
complete. The small time investment will save you a lot of stress.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 6

https://octopus.com/blog/blue-green-red-black
https://stackoverflow.com/questions/45259589/whats-the-difference-between-red-black-deployment-and-blue-green-deployment

t

CANARY DEPLOYMENTS
Use cases:

• Testing changes on
small percentage
of users

Cons:

• Requires manual
monitoring or extensive
work to automate

• Misunderstood - often
used where QA and load
testing would suffice

Requirements:

• Proxy

• Infrastructure for
second environment

• Ability to collect user
feedback

• Time and resources to
analyze feedback

Canaries are birds that were historically taken into mines for safety. If
dangerous gasses built up in the mine, the canary would die, warning the
miners to evacuate.

Likewise, the purpose of a canary deployment is to alert the dev team to
the presence of a problem before the bulk of the users are affected by it.
In a canary deployment, a small amount of traffic (usually ~5%) is directed
to the new version of the application for a testing period. If problems are
discovered, the traffic is redirected back to the old application. If not, all
traffic is directed to the updated app. Note that this is the same concept as
a blue/green deployment in terms of having two copies of the environment,
the difference being that only a small percentage of traffic is moved over
initially, rather than all of it at the same time.

However, this is a resource-intensive approach; someone must be available
to evaluate whether users are experiencing issues with the application. The
most obvious signs of a problem could be discovered by having response
speed and error metrics/alerts in place. But those issues often do not require
a deployment strategy to catch — they would normally be noticed during
testing or automated performance audits.

With that said, some larger companies have perfected canary deployments
into an art form and have set up automation to roll back based on metrics
such as error rate, latency, throughput, etc. of the newly deployed canary.
While this is a nice fail-safe that covers real-world scenarios that load
testing doesn’t catch, it is also an enormous upfront investment to develop
this automation; one that is not cost-efficient for most small and mid-
market companies.

The true benefit of canary deployments comes from catching “errors”
that could not be anticipated in advance — socially insensitive text /
connotations that the team doesn’t catch but users notice, a new confusing
UI/UX flow that the team didn’t catch due to familiarity with the product, and
so on. These are qualitative and require both a specialist or team to monitor,
as well as some way for users to report problems. As such, this deployment
strategy is best left to large companies with a huge number of users, where
any such mistake can do irreparable damage.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 7

t

ROLLING DEPLOYMENTS
Use cases:

• Deploying an
application served
from multiple
instances with
no service
interruption

• Default strategy if
using K8S

Cons:

• Risk of corrupt data if
the old and new version
of the application aren’t
compatible

Requirements:

• Multiple instances

• Health checks

• Load balancer and
logic to update the
system one instance
at a time

In my opinion, green field projects using rolling deployments are only
relevant to high-traffic applications served by multiple machines. Let’s say
a load balancer is directing traffic to 10 machines. In a rolling deployment,
each machine is taken out of circulation and updated one at a time, while
the other 9 continue to serve traffic. You could, theoretically, perform
a rolling deployment on one instance by spinning up an instance with
a new version and then turning off the old instance. However, under
those circumstances, it’s easier and safer to just perform a blue-green
deployment.

The purpose of a rolling deployment is to keep serving traffic from
multiple load-balanced instances during a deploy. A serious caveat with
implementing a rolling deployment is that there should be no conflicts
between the new and old version of the application running at the same
time, as both versions will be serving traffic during the gradual update. It’s
easy to dismiss this warning, but this situation arises all the time, both
when an object being sent to an API changes or the database schema
is updated and an out-of-date API method would be sending the wrong
model.

As with most of these strategies, there is nuance here. I stated that rolling
deployments only apply to high-traffic applications, which I maintain to
be true if you have to write the rolling deployment logic by hand. However,
Kubernetes (K8S) uses rolling deployments by default, even for low traffic,
single-instance applications, and this requires little to no custom code.
When using K8S, rolling deployments are almost always a good choice.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 8

t

A/B TESTING (NOT TRULY A
DEPLOYMENT STRATEGY)
Use cases:

• Determining which
of two versions
users prefer

• Improving
conversions

Cons:

• Requires manual
analysis

• Misunderstood - often
used where QA and
load testing would
suffice

Requirements:

• Proxy

• Infrastructure for
second environment

• Time and resources
to analyze feedback
and/or conversion
data

Once again, this approach relies on having two copies of the application
running at the same time. In this case, the two deployed applications
vary slightly and both serve live traffic simultaneously. Traditionally, half
of the traffic is directed to version “A”, and half is directed to version “B”.
This is used for testing which version the users prefer. A common use
case is seeing which version prompts more conversions — whether that’s
registering, clicking an ad, buying a product, making a donation, etc.

Additional code is required to track which version of the application the
user is using to make an action, but the code is fairly trivial to write. The
larger concern is that someone needs to analyze the data, design the “A/B
experiments”, and then write two versions of the code to try out.

I would encourage using A/B deployments in limited circumstances, and
only when an important and well defined question is posed. Otherwise, it
can be a waste of resources.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 9

t

FEATURE TOGGLES (AKA “FEATURE
FLAGS”)
Use cases:

• Continuing to merge
code with hidden
features

• Turning functionality on/
off without a redeploy

• Facilitating A/B testing

• Facilitating targeted
canary releases

Cons:

• Additional, confusing,
hard-to-troubleshoot
code

• Requires additional
clean up after feature
completion of A/B

Requirements:

• Additional logic
in codebase

Feature toggles are flags in your code which turn specific functionality on
or off. This can be used to change an app’s functionality without a deploy
(for example, by changing an environment variable). This ability to change
how an app behaves without redeploying is often used to enable other
deployment strategies. For example, the UI/UX differences seen by users
during A/B testing can be achieved by deploying the same codebase with
different feature flags enabled. The alternative to this is deploying from two
different branches or codebases.

Furthermore, feature flags can allow canary deployments to target a
well-defined group of users, rather than a random set. This is achieved by
writing a feature flag which checks for a specific role or attribute in the
user’s token, and is often used to release new features only to internal
users or those who volunteered to try out experimental updates.

Perhaps the most common use of feature flags is to hide incomplete
features from users, while continuing to commit code to the release branch
(usually “trunk” or “master”). Proponents of this strategy adhere to the
popular trunk-based development methodology, which postulates that all
work should be committed to the trunk branch as soon as possible, or code
will become increasingly stale and result in serious merge conflicts.

I disagree with this view. In my experience, hiding work-in-progress with
feature flags is a poor substitute for developing a feature in a separate
branch. Advocates of feature flags and trunk-based development often
fail to mention just how much additional work and complexity feature
flags create. Feature flags not only result in additional code which has
to be cleaned up after the feature is released, but often break unit tests,
complicate deploys, and confuse testers. This complexity is added twice —
both when the feature flag is added and when it is removed.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 10

https://trunkbaseddevelopment.com/

t

The dramatically increased code complexity is not worth the benefit. The
severity of merge conflicts can be reduced or avoided entirely by breaking
new code out into new services (or components if doing UI work), merging
the release branch into the feature branch often, and scheduling work in
a way that keeps teams from working in the same areas of the codebase.
Moreover, writing feature flags slows down work, allowing more unmerged
changes to accumulate.

As usual, the key is to consider both sides — if the feature cannot
be reasonably isolated and your company already uses trunk-based
development, feature flags deserve a second look.

SHADOW DEPLOYMENT (AKA “TRAFFIC
SHADOWING”)
Use cases:

• Simulating load
under real traffic
conditions

Cons:

• A large investment
to catch errors that
slipped past load and
integration tests

Requirements:

• Traffic forwarding

• Second API
environment, and
possibly database

A shadow deployment involves the creation of a “shadow” copy of your API
layer and forwarding all real application traffic to it, with the purpose of
checking the load tolerance of the shadow copy with new features. If this
sounds like the job for load testing software — it is. A shadow deployment
is a complex set-up for dubious benefit. What adds to the complexity is
that the “shadow” copy must also hit a “shadow” database in order to avoid
overwriting real data or affecting db performance. This strategy is unlikely
to be cost-efficient for small and mid-market companies, despite large
corporations such as Twitter using it to catch performance issues which slip
past load testing.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 11

t

FINAL THOUGHTS
Having a proper CI/CD pipeline is both easy and essential.

On the other hand, most of the advanced and highly-promoted deployment
strategies can be unnecessary and resource intensive, though it’s critical to
be aware of them if you find yourself facing the specific problem they solve.

Finally, it’s important to stress that all cloud platforms provide functionality
that was historically handled by CI/CD tools such as Jenkins, TeamCity, etc
out of the box, and that alone is a strong argument to consider the cloud
for your infrastructure. Furthermore, Cloud providers vastly simplify the
implementation of the advanced “generation 2” deployment strategies,
especially blue/green deployments, which are among the most frequently
used.

Based on Google trends, these strategies continue to gain popularity, and will
likely become easier and easier to implement over time.

AUTHOR

Victor Chtelmakh

Senior Software Developer, Callibrity

Victor graduated from the University of Cincinnati with a BBA in Finance
and Accounting. He spent several years trying to automate his jobs and
crypto-currency trading before moving into programming professionally.
MongoDB, AngularJS, and Entity Framework are among his favorite
technologies.

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 12

t

15

t

> Digital
Transformation

> Tech Audit

> Training

> Financial Services

> eCommerce

> Retail

> Manufacturing

> Technology

ABOUT CALLIBRITY
Callibrity is a software consultancy specializing in software engineering, digital
transformation, cloud strategy, and data-driven insights. Our national reach serves
clients on their digital journey to solve complex problems and create innovative solutions
for ever-changing business models. Our technology experience covers a diverse set of
industries with a focus on middle-market and enterprise companies.

Callibrity (kəˈlibrətē) is a mashup of two different roots, calli and caliber. Calli means
'beautiful' in Greek, as in Calligraphy - beautiful writing. Caliber means 'a degree of merit
or excellence'. We strive to do beautiful work with a high degree of merit and excellence.

WE ARE ARTISTS.
WE ARE ENGINEERS.
WE ARE INNOVATORS.
WE ARE CALLIBRITY.
Learn more about Callibrity
www.Callibrity.com

CALLIBRITY • WORTHWHILE MODERN DEPLOYMENT STRATEGIES 15

https://www.callibrity.com/about-us
https://www.callibrity.com/

